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Analytic dependence of the pressure and energy of an atomic fluid under shear
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Nonequilibrium molecular dynamics simulations are reported at different strain rates (ġ) for a shearing
atomic fluid interacting via accurate two- and three-body potentials. We report that the hydrostatic pressure has
a strain-rate dependence ofġ2, in contrast to theġ3/2 dependence predicted by mode-coupling theory. Our
results indicate that the pressure and energy of real fluids may display an analytic dependence on the strain rate.
This is in contrast to previous work using either Lennard-Jones or Weeks-Chandler-Anderson potentials that
had shown aġ3/2 dependence of pressure and energy.
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I. INTRODUCTION

The transport properties of atomic and molecular flu
under shear are of significant scientific and technological
terest. The dependence of the shear viscosity as a functio
applied strain rate is of major importance in the design
suitable lubricants, and the viscoelastic properties of polym
melts under extensional and shear flows are important to
industrial processing of plastics. The structural design
molecules under appropriate flow fields can be aided by
plication of simulation methods such as nonequilibrium m
lecular dynamics~NEMD!. In addition, NEMD can also be
used to assess rheological models such as the Rouse or
Edwards models of viscoelasticity for polymer solutions a
melts @1#, or the mode-coupling theory of Kawasaki an
Gunton@2#. Of particular relevance for our current work
the mode-coupling theory, which predicts that in the limit
zero shear rate the shear viscosity is a nonanalytic func
of the strain rate,h;ġ1/2. This theory also predicts that th
in-plane normal stress difference and the hydrostatic pres
both vary asġ3/2.

Typically, NEMD simulations are reported using eith
the Lennard-Jones or Weeks-Chandler-Anderson~WCA! in-
termolecular potentials to describe interatomic interacti
~e.g., see references contained in@3,4#!. However, both the
Lennard-Jones and WCA potentials are effective multibo
potentials and as such they do not represent two-body in
actions accurately@5#. Earlier simulations@6,7# with these
potentials appear to confirm the nonanalytic dependenceh
on shear rate in the limit of low strain rate. However, mo
recent work questions theġ1/2 dependence of the shear vi
cosity. For example, Ryckaertet al. @8# found a ġ2 depen-
dence of the shear viscosity. The significance of these res
is unclear because of the high strain rates and large statis
uncertainties in the data@9#. Furthermore, using profile bi
ased thermostats under conditions of large strain rates
induce unwanted string phases in the fluid, which sign
cantly reduce both the shear viscosity and the hydrost
pressure from their true values@10,11#. Bhupathiraju, Cum-
mings, and Cochran@12# demonstrate that in the limit of zer
strain rate the shear viscosity behaves in a Newtonian m
ner, i.e., the shear viscosity becomes independent ofġ.
Travis, Searles, and Evans@9# show that the shear viscosit
1063-651X/2001/63~2!/021204~10!/$15.00 63 0212
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may be fitted by a number of functions that do not have a
theoretical basis. They also show that the viscosity pro
may be successfully fitted by two separate linear functions
ġ1/2 in two different strain-rate regimes. Alternatively,
Cross equation@13# and the Quentrec local-order theory fo
isotropic fluids@14–16# were also found to give reasonab
agreement with simulation data.

Mode-coupling theory does not provide guidance on h
small the strain rate must be in order to observe the predi
ġ1/2 and ġ3/2 dependence for the shear viscosity and hyd
static pressure, respectively. As NEMD simulations are ty
cally performed at relatively high rates of strain to obta
high signal to noise ratios, such simulations cannot confi
the predictions of mode-coupling theory. In the absence
simulation data at field strengths several orders of magnit
smaller than those typically achievable, the question of
validity of mode-coupling theory remains open. Howev
most previous NEMD simulations using effective multibod
intermolecular potentials have shown that the hydrost
pressure and internal energydo behave as predicted by th
theory, even at these relatively high strain rates.

We are aware of only one previous NEMD study
simple atomic fluids interacting via accurate two- and thr
body intermolecular potentials. Lee and Cummings@17,18#
reported NEMD simulations of planar Couette flow for
system of 108 atoms interacting via a potential composed
the Barker-Fisher-Watts~BFW! two-body potential@5# plus
the three-body triple-dipole potential of Axilrod and Telle
~AT! @19#. The three-body interaction was observed to
duce the value of the shear viscosity by only 3%. In t
range of strain rates studied, Lee and Cummings found
the strain-rate behavior of the energy, pressure, and s
viscosity all conformed to the predictions of mode-coupli
theory.

In this work, we report NEMD simulations of the she
viscosity of argon interacting via the Barker-Fisher-Watts@5#
and Axilrod-Teller @19# intermolecular potentials. An ad
equate system size of 500 atoms was used resulting in gre
statistical accuracy than reported elsewhere@17,18#. We
show that the pressure is clearly not a linear function ofġ3/2,
but can be well described by an analyticġ2 dependence. This
relationship is independent of the three-body potential in
action and is only a consequence of two-body interactio
©2001 The American Physical Society04-1
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GIANLUCA MARCELLI, B. D. TODD, AND RICHARD J. SADUS PHYSICAL REVIEW E63 021204
Our results also demonstrate that the shear viscosity is
necessarily a linear function inġ1/2. The statistical accuracy
of the viscosity data is not sufficient, however, to unambig
ously determine an accurate dependence on the strain r

II. SIMULATION DETAILS

A. Intermolecular potentials

The total intermolecular potential~f! is a contribution
from two-body interactions (f (2)) and three-body dispersio
interactions (f3 BDisp):

f~r !5f~2!~r !1f3 BDisp~r !. ~1!

Several accurate two-body potentials are available in
literature@20# and a recent review is available@21#. The two-
body interaction of argon is well represented by the Bark
Fisher-Watts potential@5#. The BFW potential is a linea
combination of the Barker-Pompe@22# (fBP) and Bobetic-
Barker @23# (fBB) potentials

f~2!~r !50.75fBB~r !10.25fBP~r !, ~2!

where the potentials of Barker-Pompe and Bobetic-Bar
have the form

f~r !5eF(
i 50

5

Ai~x21! i exp@a~12x!#2(
j 50

2
C2 j 16

d1x2 j 16G
~3!

In Eq. ~3!, x5r /r m wherer m is the intermolecular separatio
at which the potential has a minimum value, and the ot
parameters are obtained by fitting the potential to experim
tal data for molecular beam scattering, second virial coe
cients, and long-range interaction coefficients. The contri
tion from repulsion has an exponential dependence
intermolecular separation, and the contribution to dispers
of the C6 , C8 , and C10 coefficients is included. The only
difference between the Barker-Pompe and Bobetic-Ba
potentials is that a different set of parameters is used in e
case. These parameters were taken from the literature@5#.

There are many possible contributions to three-body
persion interactions@21,24# involving contributions from
such factors as third-order triple-dipole, dipole-dipo
quadrupole, dipole-quadrupole-quadrupole, quadrup
quadrupole-quadrupole, and fourth-order triple-dipole int
actions. However, recent work@25,26# has clearly
established that there is a large degree of cancellation
tween the contributions and that the triple-dipole interact
alone is an accurate representation of three-body disper
interactions. The triple-dipole potential was evaluated fr
the formula proposed by Axilrod and Teller@19#:

fDDD~ i jk !5
nDDD~113 cosu i cosu j cosuk!

~r i j r ikr jk!3 , ~4!

where nDDD is the nonadditive coefficient, and the angl
and intermolecular separations refer to a triangular confi
ration of atoms. The nonadditive coefficient for argon~518.3
a.u.! was taken form the literature@27#. Recent work@25,28–
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32 indicates that the Axilrod-Teller term can significant
improve the prediction of liquid phase properties.

B. NEMD Algorithm

The NEMD simulations were performed by applying th
standardSLLOD equations of motion for planar shear flo
@3#. The SLLOD equations for a one-component atomic flu
flowing with streaming velocityux in the x direction and
constant strain rateġ5]ux /]y are

ṙ i5
pi

m
1 iġyi , ~5a!

ṗi5Fi2 iġpyi2api , ~5b!

wherer i is the laboratory position of atomi, pi is the pecu-
liar ~i.e., thermal! momentum of atomi, m is the atomic mass
~set to a reduced value of 1 in our simulations!, andFi is the
total intermolecular force~including two and three-body con
tributions! on atomi. a is a Gaussian thermostat multiplie
used to keep the kinetic temperature of the fluid constan

a5

(
i 51

N

@Fi•pi2ġpxipyi#

(
i 51

N

pi•pi

. ~6!

The equations of motion are integrated by a fouth-or
Gear predictor-corrector scheme@33#, with a reduced inte-
gration time step (t* 5tAe/ms2) of 0.001. A nonequilib-
rium simulation trajectory is typically run for 250 000 tim
steps. Averages are taken over five independent trajecto
each starting at a new configuration. To equilibrate the s
tem, each trajectory is first run without a shearing field. Af
the shearing field is switched on, the first 50 000 time st
of each trajectory are ignored, and the fluid is allowed
relax to a nonequilibrium steady state. Thus, every press
energy and viscosity data point represents a total run len
of 53200 0005106 time steps.

The two-body potentials were truncated at half the b
length and appropriate long-range correction terms w
evaluated to recover the contribution to the pressure and
ergy for the full intermolecular potential@5#. Some care
needs to be taken with the three-body potentials because
application of a periodic boundary can potentially destr
the spatial invariance of three particles@34,25#. In earlier
work @25# the behavior of the three-body terms for ma
thousands of different orientations and intermolecular se
rations was examined. All the three-body terms asympt
rapidly to zero with increasing intermolecular separation. F
a system size of 500 or more atoms, at the liquid den
studied, truncating the three-body potentials at intermole
lar separations of a quarter of the length of the simulat
box was observed to be an excellent approximation to
full potential. This also avoided the problem of three-bo
invariance to periodic boundary conditions.

The long-range corrections for the three-body energ
and pressures were calculated as
4-2
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FIG. 1. ~a! Comparison of pressure data of Evans, Morriss, and Hood@35# with our own for a system of 2048 Lennard-Jones atoms. T
pressure displays the expectedġ3/2 dependency.~b! The same, but for energy.~c! Viscosity profile.
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Elong range
~3! 5Nr2E

r 12,r 13,r 23

E
Rcutoff

~2!
,r 23

g~3!~r 12,r 13,r 23!

3fDDD~r 12,r 13,r 23!dr12dr13, ~7a!

plong range
~3! 5

3Elong range
~3!

V
, ~7b!

where we use the superposition approximation of Bark
Fisher, and Watts@5#:

g~3!~r 12,r 13,r 23!5g~2!~r 12!g
~2!~r 13!g

~2!~r 23! ~7c!

with g(2)(r 23) set to unity.
Before applying theSLLOD algorithm to the BFW fluid,

we repeated simulations on a Lennard-Jones fluid, repo
02120
r,

ed

by Evans, Morriss, and Hood@35# for a system of 2048 at-
oms with a cutoff radius of 3.5s. Our simulations were in
excellent agreement with these results, and are displaye
Fig. 1. The pressures and energies were found to vary
early with ġ3/2, whereas the viscosity varied asġ1/2, as pre-
viously observed. We further note that all subsequent sim
lations performed on the BFW fluid are made with exac
the same computer program. The only difference is the fo
of the intermolecular potentials, and hence forces, used in
calculation of fluid properties. This limits any possible erro
that could be introduced by comparing results genera
from different code.

III. RESULTS AND DISCUSSION

The results of NEMD simulations for the pressure, e
ergy, and shear viscosity of argon at different strain rates
4-3
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TABLE I. Pressure, energy, and viscosity data for the BFW potential, with and without the three bod
potential. Standard errors are represented by a single digit enclosed in parentheses, and imply that
is in the last decimal place. Two and three-body long-range corrections are included.

ġ

BFW potential BFW1AT potentials

p E h p E h

0.0 20.103~2! 23.682~2! 0.017~2! 23.557~1!

0.078 20.105~1! 23.683~1! 0.72~2! 0.019~2! 23.555~1! 0.72~3!

0.1755 20.108~1! 23.679~1! 0.754~5! 0.020~2! 23.554~1! 0.742~6!

0.24 20.102~2! 23.683~2! 0.747~6! 0.022~1! 23.552~1! 0.732~6!

0.312 20.103~2! 23.677~1! 0.753~2! 0.024~2! 23.551~1! 0.733~5!

0.4 20.099~1! 23.673~1! 0.747~1! 0.031~2! 23.550~1! 0.725~1!

0.5 20.092~4! 23.667~3! 0.746~6! 0.034~3! 23.541~1! 0.725~6!

0.702 20.079~2! 23.656~1! 0.727~2! 0.054~1! 23.529~1! 0.719~1!

0.9555 20.050~1! 23.631~2! 0.715~1! 0.084~2! 23.511~1! 0.703~2!

1.248 0.002~1! 23.595~1! 0.699~1! 0.135~1! 23.480~1! 0.689~1!

1.5795 0.076~1! 23.558~1! 0.677~1! 0.214~1! 23.443~1! 0.668~1!

1.95 0.179~2! 23.506~1! 0.653~1! 0.312~2! 23.396~1! 0.644~1!
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reported in Table I. The normal convention was adopted
the reduced density (r* 5rs3), temperature (T* 5kT/«),
energy (E* 5E/«), pressure (p* 5ps3/«), viscosity @h*
5hs2(m«)21/2#, and strain rate„ġ* 5ġ@s(m/«)1/2#…. Un-
less otherwise stated, all quantities quoted in this work ar
terms of these reduced quantities and the superscript* will
be omitted. All simulations were performed at the state po
(r,T)5(0.592 @1.034 g cm23#, 0.95 @135 K#!. This point
was chosen because it is representative of the liquid phas
argon, being approximately midway between the triple po
and the critical point. The number of atoms in our syste
was N5500, and the size of our simulation cell,L, was
9.453 reduced units. The three-body terms were truncate
0.25L, whereas the two-body terms were truncated at 0.L.
These cutoff distances further ensured that the total none
librium pair distribution function was constant~i.e., equal to
unity! over the range ofr where long-range corrections a
applied. Potential parameters were taken from the litera
@5#.

The uncertainties in the time averages for the ener
pressure, and viscosity reported in Table I represent the s
dard errors of the averages over the five independent n
equilibrium trajectories. The data include calculations w
the BFW potential alone and a combined BFW1AT poten-
tial. We confirmed that the two- and three-body energies
pressures at equilibrium were correct by comparing th
with independent calculations of these quantities obtained
the Gibbs ensemble method@36#. These results, and variou
attempts to fit the simulation data, are illustrated in Fi
2–4.

Mode-coupling theory predicts that the pressure of a fl
under shear has a linear dependence withġ3/2. To test this
prediction, we plot the total pressure of the fluid againstġ3/2

in Fig. 2~a!. If the pressure were a linear function ofġ3/2 one
would expect random statistical fluctuations in the d
points about the linear fit. However, a careful analysis of
data suggests a systematic deviation from the expectedġ3/2

linear behavior.
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In Fig. 2~b! the total pressure is presented as a function
ġ2. We find that the pressure is more closely represented
an analyticġ2 dependence. In Table II the coefficients of th
two fits are presented, as well as their respective errors.
ditionally, the coefficients of both fitted equations and t
absolute average deviations~AADs! @37# are given. The
AAD is a measure of the overall accuracy of the agreem
between the fits and the simulation data. This analysis cle
indicates that aġ2 relationship describes the dependence
the pressure with strain rate more accurately than fitting
data usingġ3/2. Recent work@48# using a truncated and
shifted Lennard-Jones potential also suggests a possiblġ2

dependence away from the triple point.
At equilibrium, a pressure of approximately 1 MPa is pr

dicted compared with an experimental value of 4 MPa@38#.
The main contribution to the overall pressure comes from
kinetic component and two-body interactions, which are
similar magnitude but of opposite sign. This means t
small statistical fluctuations in the two-body contribution c
greatly affect both the magnitude and sign of the total pr
sure.

To determine whether theġ2 dependence is due to th
addition of three-body interactions, we plot the two-body a
full two- plus three-body contributions to the total pressu
separately in Fig. 2~b!. The results for the two-body pres
sures are obtained from simulations involving only the tw
body BFW potential interactions, without the three-bo
terms. It is evident that theġ2 dependence is caused by tw
body interactions. The three-body contributions serve only
shift the pressures higher by approximately 0.1 redu
units. Although it could be reasonably expected that
three-body contribution to the total pressure may depend
strain rate, our simulation results suggest that any dep
dence is very weak for the strain rates covered.

The configurational energy per particle is presented a
function of ġ3/2 andġ2 in Figs. 3~a! and 3~b!. TheE vs ġ3/2

plot does show a systematic departure from linearity, thou
the departure is not as pronounced as that observed fo
4-4
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FIG. 2. Total two- plus three-body pressure as a function of~a! ġ3/2 and ~b! ġ2. ~c! Potential contributions to the two- an
two-body1three-body pressures as functions ofġ2.
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pressure. The coefficients of the fit along with the absol
average deviation are also presented in Table II. It is c
that based on these data alone either aġ3/2 or a ġ2 depen-
dence is an equally viable representation of the strain-
variation of the energy.

The shear viscosity of the fluid, calculated ash52(Pxy
1Pyx)/2ġ, is plotted againstġ in Fig. 4. The viscosity is not
a simple function ofġ1/2, which is consistent with the con
clusion reached by Travis, Searles, and Evans@9#. The sta-
tistical errors in our viscosity measurements are not su
ciently small to unambiguously determine the function
form of the viscosity profile. Any fit ofh vs ġn is reasonable,
where 1

2 <n<2. However, when the data are extrapolated
zero strain rate, the values of the equilibrium viscosity p
dicted by theġ, ġ3/2, and ġ2 fits @(75761)3107, (741
61)3107, and (73361)3107 N s m22, respectively# are in
good agreement with the experimental value of 74
02120
e
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-
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2

3107 N s m22 @38#. The ġ1/2 fit actually gives the worst
agreement@(80563)3107 N s m22# with experiment.

In-plane and out-of-plane viscosities were also calcula
from our simulations. However, the statistical accuracy
the results was not sufficiently good to form any conclusio
as to their functional dependence on the strain rate. Th
fore, these results are not recorded here.

Our results differ from those of Lee and Cummin
@17,18#, who observed the standardġ3/2 dependence of the
pressure with strain rate. Lee and Cummings used a sys
size of 108 atoms for both the BFW and BFW1AT calcula-
tions. Quantitative error estimates were not reported w
their data. Normally, large errors in pressure can be expe
for simulations involving such a small number of atom
which can hinder the correct identification of the strain-ra
dependency of pressure. We repeated their simulations
108 particles at the same state point, and present the re
4-5
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GIANLUCA MARCELLI, B. D. TODD, AND RICHARD J. SADUS PHYSICAL REVIEW E63 021204
for the total two- plus three-body pressure and energy dep
dence on strain rate in Figs. 5 and 6, respectively. Our si
lations were performed by time averaging over a total o
3106 time steps, and our statistics are thus more relia
We do not include long-range corrections in this set of da
which would only add a constant term to shift the press
and energy profiles. It does not change the shape, whic
what we are interested in. Once again our results confirm
ġ2 dependence of both pressure and energy.

We make the observation that a system size of 108
ticles is actually too small to account fully for all the possib
three-body interactions. The cutoff value for the three-bo
potential should not exceed one-quarter of the length of
simulation cell, for geometrical constraints imposed by
three-body interactions@25#. In their system, Lee and Cum
mings used a cell lengthL of 5.67 reduced units. Their cutof
radius was 0.5L52.835, which is too large for their sma
system size. It is primarily for such reasons that we chos
study a larger system size of 500 atoms.

The pressure tensor of the fluid was calculated by

FIG. 3. Configurational energy of the fluid as a function of~a!
ġ3/2 and ~b! ġ2.
02120
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standard Irving-Kirkwood expression@39#, modified to in-
clude three-body contributions:

^P&5
1

V K (
i 51

N

mi@vi2u~r i !#@vi2u~r i !#1 (
i 51

N21

(
j . i

N

r i j Fi j
~2!

1 (
i 51

N22

(
j . i

N21

(
k. j

N

@r i j F~ i j !k
~3! 1r ikF~ ik ! j

~3! 1r jkF~ jk !i
~3! #L ;

~8!

whereF(ab)g
(3) 52]fabg /]rab•u(r i) is the streaming veloc-

ity of the fluid atr i , vi is the velocity of atomi measured in
the laboratory frame, and we note that for theSLLOD algo-
rithm pi[vi2u(r i). Fi j

(2) is the two-body interaction force
and terms involvingF(ab)g

(3) are the corresponding three-bod

FIG. 4. Shear viscosity as a function ofġ. The lines illustrate
different fits with strain-rate dependency to the power of~a! 0.5, ~b!
1, ~c! 1.5, and~d! 2.

TABLE II. Coefficients of the various fits to the total~two- plus
three-body! pressure, energy, and viscosity profiles of Figs. 2–
Also included are the absolute average deviations as percenta

a b
AAD
~%!

p5a1bġ3/2 0.0032~6! 0.1039~5! 26.72
p5a1bġ2 0.0164~6! 0.0781~4! 3.97
E5a1bġ3/2 23.5607~4! 0.0592~3! 0.08
E5a1bġ2 23.5554~4! 0.0430~2! 0.09
h5a1bġ1/2 0.800~2! 20.105~2! 1.60
h5a1bġ 0.752~1! 20.0535~8! 0.74
h5a1bġ3/2 0.7360~8! 20.0339~5! 0.45
h5a1bġ2 0.7279~7! 20.0229~3! 0.69
4-6
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contributions to the total force. As previously pointed o
the calculation of the pressure tensor involved not only ti
averaging of the steady-state pressure, but also avera
over a number of independent simulations, each startin
different equilibrium atomic configurations.

To check that there was no error in the evaluation of E
~8!, we calculated the pressure tensor by another indepen
method, namely, by integrating over thetotal nonequilibrium
pair distribution function. This method will allow us to ca
culate the two-body contribution to the pressure. The thr
body contribution to the pressure was checked by the r
tionshipp(3)53E(3)/V @5,40#.

We can expand the nonequilibrium pair distribution fun

FIG. 5. Total two-plus three-body pressure as a function of~a!
ġ3/2 for a system of 108 atoms, AAD517.89, and~b! ġ2, AAD
56.09.
02120
,
e
ing
at

.
ent

e-
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-

tion as a Taylor series, and consider only terms that are
order in the gradient of the streaming velocity@41#, i.e.,

gn
„r ,“u~r !…5g„r ,“u~r !…1n„r ,“u~r !…S rr

r 2D :“u~r !

1~n0„r ,“u~r !…2 1
3 n„r ,“u~r !…!“•u~r !,

~9!

whereg„r ,“u(r )… is the usual pair distribution function an
n„r ,“u(r )… represents the radial part of the distortion fro
spherical symmetry of the nonequilibrium pair distributio
function. For constant volume deformation,“•u(r )50 and
so Eq.~9! simplifies to

FIG. 6. Configurational energy of the 108-atom system a
function of ~a! ġ3/2 and ~b! ġ2. AADs are 0.11 and 0.04, respec
tively.
4-7
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gn
„r ,“u~r !…5g„r ,“u~r !…1n„r ,“u~r !…S rr

r 2D :“u~r !.

~10!

Following the procedure outlined by Pryde@42–44#, one can
show thatn„r ,“u(r )… for a three-dimensional fluid shearin
in the x-y plane is

n~r ,ġ !515K xi j yi j

r i j
2 L Y 8pġrr 2dr, ~11!

where r is the fluid density,xi j 5xi2xj , yi j 5yi2yj , r i j
5r i2r j , and the averaging is performed in a small region
the fluid betweenr andr 1dr. The two-body configurationa
component of the pressure may be calculated from the v
as

pf
~2!5~2/3!pr2*0

`g~r ,ġ !r 3
]f~2!~r !

]r
dr. ~12!

FIG. 7. g(r ) andn(r ) for the fluid shearing at the highest stra
rate of ġ51.95.
02120
f

al

Note thatn(r ,ġ) contributes only to the off-diagonal ele
ments of the pressure tensor and so does not appear in
~12!. However, it will appear in the shear stress, and he
shear viscosity. The two-body contributions to the shear v
cosity and total internal energy are, respectively, determi
as

hf
~2!5~2p/15!r2*0

`n~r ,ġ !r 3
]f~2!~r !

]r
dr ~13!

and

Ef
~2!52pNr*0

`g~r ,ġ !r 2f~2!dr. ~14!

We displayg(r ,ġ) andn(r ,ġ) for the fluid shearing with
a strain rate ofġ51.95 in Fig. 7. Additionally, we include
g(r ,ġ50) at equilibrium for comparison purposes. The d
ference betweeng(r ,ġ) for ġ50 and 1.95 reflects the
change in the fluid structure with imposed strain rate, wh
is to be expected. It is well known thatg(r ,ġ) is no longer
spherically symmetric at large values ofġ @3#, but becomes
distorted at an angle of 45° to the fluid velocity streamlin

In Table III we show the two-body components of th
pressure, energy, and viscosity calculated by Eqs.~12!–~14!
alongside the direct values for a number of values ofġ. For
every value ofġ, the quantities were calculated over a sing
trajectory of 50 000 time steps. Very good agreement~up to
the fourth decimal place! is found between the direct calcu
lations and those involvingg(r ,ġ) andn(r ,ġ). This agree-
ment suggests that the observed dependencies of the
sure, energy, and viscosity on strain rate are not a result o
error in the direct calculations of these properties.

There is an additional check we can perform to ens
that the SLLOD algorithm was correctly implemented, an
that the pressures and shear stresses were correctly c
lated. For a thermostated fluid, the energy dissipation may
expressed as

Ḣ~ t !52VP:“u2a(
i 51

N pi•pi

m
. ~15!

For a shearing fluid Eq.~15! reduces to

Ḣ~ t !52VPxyġ2a(
i 51

N pi•pi

m
, ~16!
d and
ed.
TABLE III. Two-body components of pressure, energy, and viscosity calculated by the direct metho
via g(r ,ġ) andn(r ,ġ) @see Eqs.~12!–~14!#. Errors are not quoted, nor are long-range corrections includ

ġ

p2-body E2-body h2-body

~simulation! @g(r ,ġ)# ~simulation! @g(r ,ġ)# ~simulation! @n(r ,ġ)#

0.0 20.7136 20.7136 23.6384 23.6382
0.702 20.6720 20.6720 23.6118 23.6118 0.6017 0.6016
0.9555 20.6382 20.6383 23.5941 23.5941 0.5899 0.5899
1.248 20.5869 20.5870 23.5547 23.5547 0.5837 0.5837
1.549 20.5018 20.5019 23.5165 23.5165 0.5671 0.5671
1.95 20.4045 20.4046 23.4738 23.4738 0.5436 0.5436
4-8
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whereḢ(t) is the time derivative of the total internal energ
For ~a! the algorithm to be working correctly and~b! the
shear stress to be correctly calculated, the right-hand
~RHS! of Eq. ~16! must equal the left-hand side for allt. This
was indeed found to be the case in all our simulations,
for brevity we do not include the data in this paper. Add
tionally, we checked that the hydrostatic pressure calcula
was correct by calculating the dissipation for a fluid und
going planar elongation. The dissipation is related to diff
ences in the diagonal elements of the pressure tensor, an
Eq. ~15! reduces to@45#

FIG. 8. ~a! Two-dimensional projection onto thex-y plane of a
three-dimensional snapshot of the fluid shearing at the highest s
rate of ġ51.95. There is no evidence of string formation.~b! Full
three-dimensional snapshot of the fluid shearing at a high valu
ġ511. Strings are now clearly discernible.
02120
de

ut

n
-
-
so

Ḣ~ t !52V«̇@Pxx2Pyy#2a(
i 51

N pi•pi

m
. ~17!

Here «̇ is the elongation strain rate, and the fluid expands
the x direction while simultaneously contracting in they di-
rection. Details of the simulation algorithm for planar elo
gation can be found elsewhere@45,46#. Our simulations con-
firmed the equivalence of the RHS and LHS of Eq.~17!.

Previous work@8# that had attempted to show the analy
dependence of the viscosity onġ2 was criticized for the rela-
tively high rates of strain used@9#. Large strain rates can
induce unwanted string phases, i.e., highly ordered solid
configurations. These string phases arise for high Reyn
number flows, where the assumption of a linear stream
velocity profile is questionable. The linear profile is impos
upon the flow via theSLLOD equations of motion. For a
freely shearing system with Lee-Edwards periodic bound
conditions, high Reynolds number flows should exhibit
S-shaped kink in the streaming velocity profile. If the a
sumed~linear! and actual streaming velocities are not t
same, the thermostat interprets this deviation as heat,
applies an additional force to the equation of motion for t
momenta@see Eq.~5b!#. It is this additional force appearing
in the term involvinga that serves to stabilize the linea
velocity profile and enhance the ordering of the fluid by
ducing the rate of entropy production. Once the fluid’s o
dering is enhanced, its viscosity and pressure are redu
dramatically from their true values, which can lead to inco
rect dependencies onġ.

In Fig. 8~a! we project a three-dimensional snapshot
the fluid onto a two-dimensional surface in thex-y plane. The
fluid was sheared at the highest value ofġ that we simulated,
ġ51.95. There is no obvious enhancement in the structur
the fluid. For our system, strings were only noticeable at v
high values ofġ, typically ġ.5. This is in contrast to work
by Evanset al. @11#, who found evidence of strings for val
ues of ġ as low as;2. However, their simulations wer
performed on a Weeks-Chandler-Anderson fluid@47#. Our
simulations have been performed on BFW fluids, both w
and without the additional three-body term, where the ran
over which fluid atoms interact is significantly greater th
for WCA fluids. In Fig. 8~b! we show a full three-
dimensional snapshot of the fluid sheared atġ511, where
now the appearance of strings is very pronounced. If stri
were formed in our simulations, the anticipated side eff
should be to dramatically reduce the values of the visco
and hydrostatic pressure at higher strain rates. Our d
clearly do not support this.

Finally, we checked the dependence of the pressure,
ergy, and viscosity profiles on the size of the cutoff poten
radius used. While the results presented here were perfor
with a two-body cutoff radius ofr c

(2)50.5L54.726, we also
performed simulations at a smaller cutoff ofr c

(2)52.28 for a
system of 500 atoms. The shapes of these profiles rema
unchanged.

in

of
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IV. CONCLUSIONS

We have demonstrated that use of accurate two-
three-body potentials for shearing liquid argon displays s
nificant departure from the expected strain-rate dependen
of the pressure, energy, and shear viscosity. The pressu
convincingly observed to vary linearly with an apparent a
lytic ġ2 dependence, in contrast to the predictedġ3/2 depen-
dence of mode-coupling theory. This dependence results
marily from the two-body potential. The three-body ter
serves only to raise the magnitude of the total pressure.
dependence of the energy on strain rate could also var
ġ2, but aġ3/2 dependence is also possible, and we are una
to unambiguously distinguish between them. Further wor
required to resolve this issue. The shear viscosity is also s
s

-

e

ni

ys

ol

,

-

02120
d
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ri-
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en

not to be a simple function ofġ1/2, and our data are in gen
eral agreement with recent work of other authors. Our b
extrapolation of the zero-shear viscosity gives excell
agreement~within 1%! with the known experimental value
of 740.23107 N s m22.
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