PHYSICAL REVIEW E, VOLUME 63, 021204
Analytic dependence of the pressure and energy of an atomic fluid under shear
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Nonequilibrium molecular dynamics simulations are reported at different strain rajei( a shearing
atomic fluid interacting via accurate two- and three-body potentials. We report that the hydrostatic pressure has
a strain-rate dependence §f, in contrast to they®? dependence predicted by mode-coupling theory. Our
results indicate that the pressure and energy of real fluids may display an analytic dependence on the strain rate.
This is in contrast to previous work using either Lennard-Jones or Weeks-Chandler-Anderson potentials that
had shown a*?2 dependence of pressure and energy.
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[. INTRODUCTION may be fitted by a number of functions that do not have any
theoretical basis. They also show that the viscosity profile

The transport properties of atomic and molecular fluidsmay be successfully fitted by two separate linear functions of
under shear are of significant scientific and technological in4*? in two different strain-rate regimes. Alternatively, a
terest. The dependence of the shear viscosity as a function @fross equatiofl13] and the Quentrec local-order theory for
applied strain rate is of major importance in the design ofisotropic fluids[14—16 were also found to give reasonable
suitable lubricants, and the viscoelastic properties of polymeagreement with simulation data.
melts under extensional and shear flows are important to the Mode-coupling theory does not provide guidance on how
industrial processing of plastics. The structural design ofmall the strain rate must be in order to observe the predicted
molecules under appropriate flow fields can be aided by apy*? and 2 dependence for the shear viscosity and hydro-
plication of simulation methods such as nonequilibrium mo-static pressure, respectively. As NEMD simulations are typi-
lecular dynamic§NEMD). In addition, NEMD can also be cally performed at relatively high rates of strain to obtain
used to assess rheological models such as the Rouse or Dbigh signal to noise ratios, such simulations cannot confirm
Edwards models of viscoelasticity for polymer solutions andthe predictions of mode-coupling theory. In the absence of
melts [1], or the mode-coupling theory of Kawasaki and simulation data at field strengths several orders of magnitude
Gunton[2]. Of particular relevance for our current work is smaller than those typically achievable, the question of the
the mode-coupling theory, which predicts that in the limit of validity of mode-coupling theory remains open. However,
zero shear rate the shear viscosity is a nonanalytic functiomost previous NEMD simulations using effective multibody
of the strain ratey;~ 2. This theory also predicts that the intermolecular potentials have shown that the hydrostatic
in-plane normal stress difference and the hydrostatic pressupessure and internal energyp behave as predicted by the
both vary asy®? theory, even at these relatively high strain rates.

Typically, NEMD simulations are reported using either ~We are aware of only one previous NEMD study of
the Lennard-Jones or Weeks-Chandler-Ander89A) in-  simple atomic fluids interacting via accurate two- and three-
termolecular potentials to describe interatomic interactiondody intermolecular potentials. Lee and Cummings,18
(e.g., see references contained &4]). However, both the reported NEMD simulations of planar Couette flow for a
Lennard-Jones and WCA potentials are effective multibodysystem of 108 atoms interacting via a potential composed of
potentials and as such they do not represent two-body intethe Barker-Fisher-Watte8FW) two-body potentia[5] plus
actions accurately5]. Earlier simulationg6,7] with these the three-body triple-dipole potential of Axilrod and Teller
potentials appear to confirm the nonanalytic dependenege of (AT) [19]. The three-body interaction was observed to re-
on shear rate in the limit of low strain rate. However, moreduce the value of the shear viscosity by only 3%. In the
recent work questions the'?> dependence of the shear vis- range of strain rates studied, Lee and Cummings found that
cosity. For example, Ryckaeet al. [8] found ay? depen- the strain-rate behavior of the energy, pressure, and shear
dence of the shear viscosity. The significance of these resultgscosity all conformed to the predictions of mode-coupling
is unclear because of the high strain rates and large statistictileory.
uncertainties in the datgd]. Furthermore, using profile bi- In this work, we report NEMD simulations of the shear
ased thermostats under conditions of large strain rates carnscosity of argon interacting via the Barker-Fisher-Wgiis
induce unwanted string phases in the fluid, which signifi-and Axilrod-Teller [19] intermolecular potentials. An ad-
cantly reduce both the shear viscosity and the hydrostatiequate system size of 500 atoms was used resulting in greater
pressure from their true valu¢s0,11. Bhupathiraju, Cum- statistical accuracy than reported elsewh§t&,18. We
mings, and Cochraf2] demonstrate that in the limit of zero show that the pressure is clearly not a linear functiofy ¥,
strain rate the shear viscosity behaves in a Newtonian marbut can be well described by an analyjit dependence. This
ner, i.e., the shear viscosity becomes independenf.of relationship is independent of the three-body potential inter-
Travis, Searles, and Evah8] show that the shear viscosity action and is only a consequence of two-body interactions.
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Our results also demonstrate that the shear viscosity is n@&2 indicates that the Axilrod-Teller term can significantly
necessarily a linear function ‘2. The statistical accuracy improve the prediction of liquid phase properties.

of the viscosity data is not sufficient, however, to unambigu-

ously determine an accurate dependence on the strain rate. B. NEMD Algorithm

The NEMD simulations were performed by applying the
standardsLLoD equations of motion for planar shear flow
A. Intermolecular potentials [3]. The sLLOD equations for a one-component atomic fluid
flowing with streaming velocityu, in the x direction and
constant strain rat¢=du,/Jy are

Il. SIMULATION DETAILS

The total intermolecular potentidkp) is a contribution
from two-body interactions¢(®) and three-body dispersion
interactions ¢°BP'sP):

B(r)=¢'2(r)+$*BP™Ar). @

Several accurate two-body potentials are available in the pi=Fi—iypyi—ap;, (5b)
literature[20] and a recent review is availall21]. The two-
body interaction of argon is well represented by the Barker
Fisher-Watts potentia]5]. The BFW potential is a linear
combination of the Barker-Pomgd@2] (¢gp) and Bobetic-
Barker[23] (¢gg) potentials

R
ri:EI_H?’yir (58

wherer; is the laboratory position of atom p; is the pecu-
liar (i.e., thermal momentum of atony mis the atomic mass
(set to a reduced value of 1 in our simulatiprendF; is the
total intermolecular forcéincluding two and three-body con-
tributiong on atomi. « is a Gaussian thermostat multiplier

»@(r)=0.75pgg(r )+ 0.25h5x(1), (2)  used to keep the kinetic temperature of the fluid constant:
where the potentials of Barker-Pompe and Bobetic-Barker § [F. D= YDypoi]
have the form  LFiPi= PxiPyi
5 2 a= N (6)
. Cy;
$(N=e 3, Alx—1) exila(1-x)]- 3, =5 2, Pip
=0 =0 6+x =1

@ The equations of motion are integrated by a fouth-order

In Eq. (3), x=r/r, wherer ,, is the intermolecular separation Gear predictor-corrector scherig3], with a reduced inte-

at which the potential has a minimum value, and the othegration time step t¢ =t\/e/ma?) of 0.001. A nonequilib-
parameters are obtained by fitting the potential to experimendum simulation trajectory is typically run for 250 000 time
tal data for molecular beam scattering, second virial coeffisteps. Averages are taken over five independent trajectories,
cients, and long-range interaction coefficients. The contribueach starting at a new configuration. To equilibrate the sys-
tion from repulsion has an exponential dependence otem, each trajectory is first run without a shearing field. After
intermolecular separation, and the contribution to dispersiothe shearing field is switched on, the first 50 000 time steps
of the Cg4, Cg, and C,, coefficients is included. The only of each trajectory are ignored, and the fluid is allowed to
difference between the Barker-Pompe and Bobetic-Barkefelax to a nonequilibrium steady state. Thus, every pressure,
potentials is that a different set of parameters is used in eagtnergy and viscosity data point represents a total run length
case. These parameters were taken from the literffijre ~ of 5x200000=10° time steps.

There are many possible contributions to three-body dis- The two-body potentials were truncated at half the box
persion interactiond21,24 involving contributions from length and appropriate long-range correction terms were
such factors as third-order triple-dipole, dipole-dipole-€evaluated to recover the contribution to the pressure and en-
quadrupole, dipole-quadrupole-quadrupole, quadrupoleergy for the full intermolecular potentidl5]. Some care
quadrupole-quadrupole, and fourth-order triple-dipole interneeds to be taken with the three-body potentials because the
actions. However, recent work[25,26 has clearly application of a periodic boundary can potentially destroy
established that there is a large degree of cancellation b&ie spatial invariance of three particlg34,25. In earlier
tween the contributions and that the triple-dipole interactiorwork [25] the behavior of the three-body terms for many
alone is an accurate representation of three-body dispersidhousands of different orientations and intermolecular sepa-
interactions. The triple-dipole potential was evaluated fronvations was examined. All the three-body terms asymptote

the formula proposed by Axilrod and Tellgt9]: rapidly to zero with increasing intermolecular separation. For
a system size of 500 or more atoms, at the liquid density

. vppp(1+3 cosé; cose; cosby) studied, truncating the three-body potentials at intermolecu-
$ooo(ijk)= (rijrikrjk)s N lar separations of a quarter of the length of the simulation
box was observed to be an excellent approximation to the
where vppp is the nonadditive coefficient, and the anglesfull potential. This also avoided the problem of three-body
and intermolecular separations refer to a triangular configumnvariance to periodic boundary conditions.
ration of atoms. The nonadditive coefficient for argéi8.3 The long-range corrections for the three-body energies
a.u) was taken form the literatuf@7]. Recent wor25,28—  and pressures were calculated as
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FIG. 1. (a) Comparison of pressure data of Evans, Morriss, and H86Hwith our own for a system of 2048 Lennard-Jones atoms. The
pressure displays the expectgtf? dependency(b) The same, but for energyc) Viscosity profile.

by Evans, Morriss, and Hoo85] for a system of 2048 at-

El(gn)g rangé= szf f ) 9 (11,1 13.1 2) oms with a cutoff radius of 3& Our simulations were in
r12=r13%"23” Rouroff~"23 excellent agreement with these results, and are displayed in
Fig. 1. The pressures and energies were found to vary lin-

X $oop(M12,M13,123) Al 10013, (73 early with %2, whereas the viscosity varied 43, as pre-
3E®3) viqusly observed. We further note.that all subsequent simu-

p 03ng range:Me, (7b)  lations performed on the BFW fluid are made with exactly
V

the same computer program. The only difference is the form
of the intermolecular potentials, and hence forces, used in the
calculation of fluid properties. This limits any possible errors
that could be introduced by comparing results generated
from different code.

where we use the superposition approximation of Barker
Fisher, and Watt§5]:

9 (r12,r13.r20=92(r1)g@(r199?(rp9 (70

with g‘@(r,3) set to unity.
Before applying thesLLop algorithm to the BFW fluid, The results of NEMD simulations for the pressure, en-
we repeated simulations on a Lennard-Jones fluid, reportegrgy, and shear viscosity of argon at different strain rates are

Ill. RESULTS AND DISCUSSION
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TABLE I. Pressure, energy, and viscosity data for the BFW potential, with and without the three body AT
potential. Standard errors are represented by a single digit enclosed in parentheses, and imply that the error
is in the last decimal place. Two and three-body long-range corrections are included.

BFW potential BFW-AT potentials
Y p E 7 p E 7

0.0 -0.1032) —3.6822) 0.0172) —3.5571)

0.078 —0.1051) —3.6831) 0.722) 0.0192) —3.5551) 0.723)
0.1755 —0.1081) -3.6791) 0.7545) 0.0202) —3.5541) 0.7426)
0.24 -0.1032) —3.6832) 0.7476) 0.0241) —3.5571) 0.7346)
0.312 —0.1032) —3.6711) 0.7532) 0.0242) —3.5511) 0.7335)
0.4 —0.0991) —3.6731) 0.7471) 0.0312) —3.5501) 0.7251)
0.5 —0.0924) —3.6673) 0.7466) 0.0343) —3.5411) 0.7256)
0.702 —-0.0792) —3.6561) 0.7272) 0.0541) —-3.5291) 0.7191)
0.9555 —0.0501) -3.6312) 0.7151) 0.0842) -3.5111) 0.7032)
1.248 0.0021) —3.5951) 0.6991) 0.1351) —3.48Q1) 0.6891)
1.5795 0.076L) —3.5581) 0.6771) 0.2141) —3.4431) 0.6641)
1.95 0.1792) —3.5041) 0.6531) 0.3122) —3.3941) 0.6441)

reported in Table I. The normal convention was adopted for In Fig. 2(b) the total pressure is presented as a function of
the reduced densitypf =po>), temperature T* =kT/¢), ¥?. We find that the pressure is more closely represented by
energy E*=E/e), pressure §* =po°le), viscosity [ n* an analyticy? dependence. In Table Il the coefficients of the
= po?(me) Y2, and strain ratgy* = y[a(m/e)¥?]). Un-  two fits are presented, as well as their respective errors. Ad-
less otherwise stated, all quantities quoted in this work are idlitionally, the coefficients of both fitted equations and the
terms of these reduced quantities and the superstriptl absolute average deviatiof®ADs) [37] are given. The
be omitted. All simulations were performed at the state pointAAD is a measure of the overall accuracy of the agreement
(p,T)=(0.592 [1.034gcm 3], 0.95[135 K]). This point  between the fits and the simulation data. This analysis clearly
was chosen because it is representative of the liquid phase ofdicates that g relationship describes the dependence of
argon, being approximately midway between the triple pointhe pressure with strain rate more accurately than fitting the
and the critical point. The number of atoms in our systemdlata usingy®?. Recent work[48] using a truncated and
was N=500, and the size of our simulation cell, was shifted Lennard-Jones potential also suggests a posgfble
9.453 reduced units. The three-body terms were truncated dependence away from the triple point.
0.28_, whereas the two-body terms were truncated at 0.5 At equilibrium, a pressure of approximately 1 MPa is pre-
These cutoff distances further ensured that the total nonequilicted compared with an experimental value of 4 MB&].
librium pair distribution function was constafite., equal to  The main contribution to the overall pressure comes from the
unity) over the range of where long-range corrections are kinetic component and two-body interactions, which are of
applied. Potential parameters were taken from the literatursimilar magnitude but of opposite sign. This means that
[5]. small statistical fluctuations in the two-body contribution can
The uncertainties in the time averages for the energygreatly affect both the magnitude and sign of the total pres-
pressure, and viscosity reported in Table | represent the stasure.
dard errors of the averages over the five independent non- To determine whether th&? dependence is due to the
equilibrium trajectories. The data include calculations withaddition of three-body interactions, we plot the two-body and
the BFW potential alone and a combined BFAT poten-  full two- plus three-body contributions to the total pressure
tial. We confirmed that the two- and three-body energies andeparately in Fig. ®). The results for the two-body pres-
pressures at equilibrium were correct by comparing thensures are obtained from simulations involving only the two-
with independent calculations of these quantities obtained bipody BFW potential interactions, without the three-body
the Gibbs ensemble meth¢@6]. These results, and various terms. It is evident that thg® dependence is caused by two-
attempts to fit the simulation data, are illustrated in Figs.body interactions. The three-body contributions serve only to
2-4. shift the pressures higher by approximately 0.1 reduced
Mode-coupling theory predicts that the pressure of a fluidunits. Although it could be reasonably expected that the
under shear has a linear dependence with. To test this three-body contribution to the total pressure may depend on
prediction, we plot the total pressure of the fluid agaii®®  strain rate, our simulation results suggest that any depen-
in Fig. 2(a). If the pressure were a linear function’t?one  dence is very weak for the strain rates covered.
would expect random statistical fluctuations in the data The configurational energy per particle is presented as a
points about the linear fit. However, a careful analysis of thefunction of *2 and %2 in Figs. 3a) and 3b). TheE vs ¥°/?
data suggests a systematic deviation from the expegtéd plot does show a systematic departure from linearity, though
linear behavior. the departure is not as pronounced as that observed for the
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FIG. 2. Total two- plus three-body pressure as a function(@f ¥*? and (b) %?. (c) Potential contributions to the two- and

two-body+three-body pressures as functionsysf

pressure. The coefficients of the fit along with the absolutex 10" Nsm 2 [38]. The %2 fit actually gives the worst
average deviation are also presented in Table II. It is cleaggreemenf(805+3)x 10" Nsm 2] with experiment.

that based on these data alone eithér’4 or a ¥* depen- In-plane and out-of-plane viscosities were also calculated
dence is an equally viable representation of the strain-ratgom our simulations. However, the statistical accuracy of
variation of the energy. the results was not sufficiently good to form any conclusions

The shear viscosity of the fluid, calculated #s —(Py,  as to their functional dependence on the strain rate. There-
+Py,)/2y, is plotted againsy in Fig. 4. The viscosity is not  fore, these results are not recorded here.
a simple function ofy"?, which is consistent with the con-  Our results differ from those of Lee and Cummings
clusion reached by Travis, Searles, and EvVi@sThe sta- [17,18, who observed the standaid’?> dependence of the
tistical errors in our viscosity measurements are not suffipressure with strain rate. Lee and Cummings used a system
ciently small to unambiguously determine the functionalsjze of 108 atoms for both the BEW and BRVAT calcula-
form of the viscosity profile. Any fit ofy vs %" is reasonable, tions. Quantitative error estimates were not reported with
where;<n=2. However, when the data are extrapolated totheir data. Normally, large errors in pressure can be expected
zero strain rate, the values of the equilibrium viscosity prefor simulations involving such a small number of atoms,
dicted by they, %2 and #? fits [(757=1)x10’, (741  which can hinder the correct identification of the strain-rate
+1)x10, and (733-1)x 10’ Nsm?, respectivelyare in  dependency of pressure. We repeated their simulations for
good agreement with the experimental value of 740.2108 particles at the same state point, and present the results
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whereF (), = —ddap,/r,p-u(r;) is the streaming veloc-
ity of the fluid atr;, v; is the velocity of atom measured in
for the total tW.O' plus. thrge-body pressure anq energy depeqhe laboratory frame, and we note that for theob algo-
dence on strain rate in Figs. 5 and 6, respectively. Our SiMUzp =V, —u(r,). Fi(jz) is the two-body interaction force,

lations were performed by time averaging over a total of 2 . L (3) :
X 10° time steps, and our statistics are thus more reliablez.ind terms involving=(),, are the corresponding three-body

We do not include long-range corrections in this set of data, frici  th ious f h |
which would only add a constant term to shift the pressurethrgig(l)‘gylI‘recsseur:'e:rgsero t znv(?r\'l?::osﬁs o :O:}Ietgt%l?/?:} psusz 4
and energy profiles. It does not change the shape, which P ' @ v P 9s. o~

. . . . I&Iso included are the absolute average deviations as percentages.
what we are interested in. Once again our results confirm the

¥? dependence of both pressure and energy. AAD
We make the observation that a system size of 108 par- a b (%)

ticles is actually too small to account fully for all the possible

three-body interactions. The cutoff value for the three-bodyp=a+by*? 0.00326) 0.10395) 26.72
potential should not exceed one-quarter of the length of the=a+b? 0.01646) 0.07814) 3.97
simulation cell, for geometrical constraints imposed by theE=a+by®? —3.56074) 0.05923) 0.08
three-body interactiong25]. In their system, Lee and Cum- E=a+by? —3.55544) 0.043@2) 0.09
mings used a cell length of 5.67 reduced units. Their cutoff »=a+by2 0.8002) —0.1052) 1.60
radius was 0.6=2.835, which is too large for their small »=a+by 0.7521) —0.053%8) 0.74
system size. It is primarily for such reasons that we chose tg,=a+b33? 0.73608) —0.03395) 0.45
study a larger system size of 500 atoms. n=a+by? 0.72797) —0.02293) 0.69

The pressure tensor of the fluid was calculated by the
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FIG. 6. Configurational energy of the 108-atom system as a
function of (a) %2 and (b) ¥°. AADs are 0.11 and 0.04, respec-

FIG. 5. Total two-plus three-body pressure as a functiofapf tively

¥%? for a system of 108 atoms, AAD17.89, and(b) ¥?, AAD
=6.09.
tion as a Taylor series, and consider only terms that are first
contributions to the total force. As previously pointed out,Order in the gradient of the streaming velodigl], i.e.,
the calculation of the pressure tensor involved not only time o
averaging of the steady-state pressure, but also averaging ,n FVUrN=alr - Vu(r))+ v(r Vu(r (—)'Vu r
over a number of independent simulations, each starting at g(r, Vu(r)=g(r,vu(r)+v(r, vu(r)) r2) (")
different equilibrium atomic configurations. 1
To check that there was no error in the evaluation of Eq. +(wo(r, Vu(r) =5 v(r, Vu(n) V- u(r),
(8), we calculated the pressure tensor by another independent (9
method, namely, by integrating over tteal nonequilibrium
pair distribution function. This method will allow us to cal- whereg(r,Vu(r)) is the usual pair distribution function and
culate the two-body contribution to the pressure. The threex(r,Vu(r)) represents the radial part of the distortion from
body contribution to the pressure was checked by the relaspherical symmetry of the nonequilibrium pair distribution
tionshipp®®=3E®)V [5,40]. function. For constant volume deformatiow, u(r)=0 and
We can expand the nonequilibrium pair distribution func-so Eq.(9) simplifies to
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¥ L e B s B s B B B e Note that»(r,y) contributes only to the off-diagonal ele-

B y ments of the pressure tensor and so does not appear in Eq.
B . (12). However, it will appear in the shear stress, and hence
shear viscosity. The two-body contributions to the shear vis-
cosity and total internal energy are, respectively, determined

7] as
- @)y

_ 7P =(2m/15)p?[§v(r, y)r (b&—r()dr (13
7 and

i E;'=27Npf5g(r, y)r?¢?dr. (14)

. We displayg(r,y) andv(r,y) for the fluid shearing with
. a strain rate ofy=1.95 in Fig. 7. Additionally, we include
-] g(r,y=0) at equilibrium for comparison purposes. The dif-
ference betweerg(r,y) for y=0 and 1.95 reflects the
B K change in the fluid structure with imposed strain rate, which
B I I I I ] is to be expected. It is well known thg(r, ) is no longer
_2 [ 1 1 L L L 1 L il 1 L1 ..l 1 Ll 1l . . o
0 1 ) s 4 5 s_pherlcally symmetric at large values_ »f 3], put becomes
r distorted at an angle of 45° to the fluid velocity streamlines.
In Table Ill we show the two-body components of the
FIG. 7.9(r) andv(r) for the fluid shearing at the highest strain pressure, energy, and viscosity calculated by Et@—(14)
rate of y=1.95. alongside the direct values for a number of valueg ofor
every value ofy, the quantities were calculated over a single
r trajectory of 50 000 time steps. Very good agreenieptto
g"(r,Vu(r))=g(r,Vu(r))+ v(r,VU(r))(r—z) :Vu(r). the fourth decimal plages found between the direct calcu-
(10) lations and those involving(r,y) and v(r,vy). This agree-
ment suggests that the observed dependencies of the pres-
Following the procedure outlined by Pryfi$2—44], one can  sure, energy, and viscosity on strain rate are not a result of an
show thatv(r,Vu(r)) for a three-dimensional fluid shearing error in the direct calculations of these properties.

in the x-y plane is There is an additional check we can perform to ensure
that the sLLoD algorithm was correctly implemented, and
.Jyu . that the pressures and shear stresses were correctly calcu-
v(r,y)=15 2 8mypredr (1) |ated. For a thermostated fluid, the energy dissipation may be

expressed as
Wherep is the fluid denSity,Xij:Xi_Xj, yij:yi_yj! rij

=r;—r;, and the averaging is performed in a small region of _ p| p|
the fluid betweem andr +dr. The two-body configurational H(H)=—~VP:Vu- aZ (15
component of the pressure may be calculated from the virial
as For a shearing fluid Eq.15) reduces to
B R L A IO. pi
Py = (213 mp*[5g(r,y)r’— —dr. (12) H(t)=—VPy,y— aE , (16)

TABLE lll. Two-body components of pressure, energy, and viscosity calculated by the direct method and
viag(r,y) andv(r,¥y) [see Eqs(12)—(14)]. Errors are not quoted, nor are long-range corrections included.

P2-body E2-body 72-body

y (simulation [a(r,y)] (simulation [a(r,y)] (simulation [v(r,y)]
0.0 —0.7136 —0.7136 —3.6384 —3.6382
0.702 —0.6720 —0.6720 —3.6118 —3.6118 0.6017 0.6016
0.9555 —0.6382 —0.6383 —3.5941 —3.5941 0.5899 0.5899
1.248 —0.5869 —0.5870 —3.5547 —3.5547 0.5837 0.5837
1.549 —0.5018 —0.5019 —3.5165 —3.5165 0.5671 0.5671
1.95 —0.4045 —0.4046 —3.4738 —3.4738 0.5436 0.5436
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10.00 —
Pi- Pi
o

_ 17

N
H(t)=—V&[ Py, — Pyy]—ozg,1
s.oo—'..'_ et R

B AT L S Heree is the elongation strain rate, and the fluid expands in
) ‘p¥F @ - CL. . the x direction while simultaneously contracting in thedi-
6.00 7 “a ¥y 5.5 rection. Details of the simulation algorithm for planar elon-
R S gation can be found elsewher5,46. Our simulations con-
N T firmed the equivalence of the RHS and LHS of ELj7).
400y & LT el e L . Previous worK 8] that had attempted to show the analytic
T _d dependence of the viscosity & was criticized for the rela-
L oa T M tively high rates of strain usefB]. Large strain rates can
2.00 — <7 " e ‘o induce unwanted string phases, i.e., highly ordered solidlike
e " oo L configurations. These string phases arise for high Reynolds
T L number flows, where the assumption of a linear streaming
) ’ ; : velocity profile is questionable. The linear profile is imposed
upon the flow via thesLLoD equations of motion. For a
0.00 2.00 4.00 6.00 8.00 10.00 . . . R
(a) X freely shearing system with Lee-Edwards periodic boundary
conditions, high Reynolds number flows should exhibit an
S-shaped kink in the streaming velocity profile. If the as-
sumed (linean and actual streaming velocities are not the
same, the thermostat interprets this deviation as heat, and
applies an additional force to the equation of motion for the
momentg see Eq(5b)]. It is this additional force appearing
in the term involvinga that serves to stabilize the linear
velocity profile and enhance the ordering of the fluid by re-
ducing the rate of entropy production. Once the fluid’'s or-
dering is enhanced, its viscosity and pressure are reduced
dramatically from their true values, which can lead to incor-
rect dependencies on
In Fig. 8@ we project a three-dimensional snapshot of
the fluid onto a two-dimensional surface in the plane. The
fluid was sheared at the highest valueyahat we simulated,
vy=1.95. There is no obvious enhancement in the structure of
the fluid. For our system, strings were only noticeable at very
high values ofy, typically y>5. This is in contrast to work
by Evanset al.[11], who found evidence of strings for val-
ues of ¥y as low as~2. However, their simulations were
performed on a Weeks-Chandler-Anderson fl{Ad]. Our
simulations have been performed on BFW fluids, both with
FIG. 8. (a) Two-dimensional projection onto they plane of a  and without the additional three-body term, where the range
three-d.imensional snapshot of 'Fhe fluid shegring at thelhighest stragver which fluid atoms interact is significantly greater than
rate of_yz 1.9_5. There is no ewdence_of strlng formatlcé_b) Full for WCA fluids. In Fig. 8b) we show a full three-
t_hiee-dlme_nsmnal snapshot of the flum_l shearing at a high value Ogiimensional snapshot of the fluid shearedyat11, where
y=11. Strings are now clearly discernible. . . .
now the appearance of strings is very pronounced. If strings
were formed in our simulations, the anticipated side effect

: ) houl icall h | f the vi i
For (a) the algorithm to be working correctly an) the should be to dramatically reduce the values of the viscosity

. . h tati t high trai tes. t
shear stress to be correctly calculated, the right-hand S|dand ydrostatic pressure at higher strain rates. Our data

(RHYS) of Eq. (16) must equal the left-hand side for &llThis (%elz:i_rrl]);ltljo noet (S:E(ggl(zgdﬂt]rl}se dependence of the pressure. en
was indeed found to be the case in all our simulations, but ihally, W P pressure, en-

for brevity we do not include the data in this paper. Addi- ergy. and viscos?ty profiles on the size of the cutoff potential
tionally, we checked that the hydrostatic pressure calculatiof2dius used. While the results prgsented here were performed
was correct by calculating the dissipation for a fluid under-With a two-body cutoff radius of{(*)=0.5.=4.726, we also
going planar elongation. The dissipation is related to differ-performed simulations at a smaller cutoffrdf)=2.28 for a
ences in the diagonal elements of the pressure tensor, and sgstem of 500 atoms. The shapes of these profiles remained
Eq. (15) reduces td45] unchanged.

0.00 T | T | = ‘" —* ‘.. T ‘

(b)

whereH (t) is the time derivative of the total internal energy.
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V. CONCLUSIONS not to be a simple function of'?, and our data are in gen-
Sral agreement with recent work of other authors. Our best

We have demonstrated that use of accurate two- an lati £ th h . . . I
three-body potentials for shearing liquid argon displays sig—e xtrapolation of the zero-shear viscosity gives excellent
reementwithin 1%) with the known experimental value

nificant departure from the expected strain-rate dependenci(%q 7 )

: . 01 740.2<10"Nsm -,
of the pressure, energy, and shear viscosity. The pressure is
convincingly observed to vary linearly with an apparent ana-
lytic ¥? dependence, in contrast to the prediciéf depen-
dence of mode-coupling theory. This dependence results pri- G.M. thanks the Australian government for financial sup-
marily from the two-body potential. The three-body term port. Generous allocations of computer time on the Fujitsu
serves only to raise the magnitude of the total pressure. ThéPP300 and NEC SX-4/32 computers were provided by the
dependence of the energy on strain rate could also vary asustralian National University Supercomputer Centre and
%2, but ay*? dependence is also possible, and we are unablthe CSIRO High Performance Computing and Communica-
to unambiguously distinguish between them. Further work igions Centre, respectively. We also wish to thank J. Ge for
required to resolve this issue. The shear viscosity is also seassistance with some simulations.
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